I can’t remember if I saw the argument here or on Reddit, but this is my preferred platform so it’s going here.

Summary of argument: a user should have been using water for their thermal battery, not sand, because water has better heat capacity (4.18 joules per unit of mass person unit heat - 4.18/gK). Sand’s thermal capacity is significantly lower (0.835J/gK).

Looking at these numbers alone in the post I understood why someone would say that; it also made me question why so much research is being done on sand batteries. The user who argued against sand batteries missed a crucial factor: material density. Water has a density of 1000kg per m^3. Dry sand (regular not pure quartz sand) has a density of 1730 kg per m^3. I found no satisfactry response to the argument in that thread, but that thread is now lost to me. I have also been curious about how much better regular sand is for heat batteries than water.

When designing large batteries, the goal is usually energy per volume. Let’s compare 1m^3 of each (roughly 3.3ft cube) and how much heat it can hold before the next state change (which matters a lot when managing the pressure from steam).

Total stored energy = mass (g) * thermal capacity (J/gK) * heat (kelvin).

Water: 1,000,000 * 4.18 * 373.15 = 1,559,767,000J Sand: 1,730,000 * 0.835 * 1996.15 = 2,883,538,482.5J

Over 1 billion more joules per m^3. I hope this makes it clearer why sand batteries are such an area of interest lately. It certainly did to me.

Disclaimer: I am not an expert, so there may be mistakes. All the numbers and relevant equations were found on the internet.

  • proctonaut@lemmy.world
    link
    fedilink
    arrow-up
    2
    ·
    7 months ago

    Alright so I have a question for you. Let’s say I’m designing one of these things for a greenhouse or something. I’m thinking underground storage tank of 500 gallons or so but basically filling it with sand and then again topping it off with water. It should minimize convection currents in the water and where it there isn’t much of a thermal draw there shouldn’t be much of an issue right?

    • CybermatrixV2@slrpnk.net
      link
      fedilink
      arrow-up
      1
      ·
      7 months ago

      Unfortunately that would negate the high storage temperature of sand (up to 800 degree c) as water will turn into steam after 100deg. So it is either low temperature sand or water with lower energy density.

      • proctonaut@lemmy.world
        link
        fedilink
        arrow-up
        1
        ·
        7 months ago

        Thermal mass would be secondary for the sand. I’m more concerned with it helping the structure of the tank underground and avoiding slump from what the tank would be buried in. Probably feeding it heat from a thermal solar set-up.