• mako@lemmy.today
    link
    fedilink
    English
    arrow-up
    9
    ·
    6 months ago

    I get that the heavier bowling ball affects the acceleration of the earth more than the lighter feather, but I don’t see how that means it’s falling faster as the meme is stating. The bowling ball would meet the earth first when dropped separately and from the same height because the earth is (imperceivably) accelerating toward it faster than it does the falling feather, but both the bowling ball and feather are falling at the same rate due to Earth’s gravitational force.

    Or am I missing something?

    • Adalast@lemmy.world
      link
      fedilink
      English
      arrow-up
      14
      ·
      6 months ago

      One definition for a “rate of falling” would comfortably be “the time it takes the surfaces of two free gravitational separated by some distance to meet.” With this in mind, the imperceptible but very real difference in the acceleration of the earth towards the bowling ball would become part of that equation, as it shortens the distance between the two from the other side.

      Think of it like a head on collision of two vehicles. You can do the math as two bodies colliding with opposite velocity vectors, or you can arrive at the same mathematical result (at least for some calculations) by considering one of them to be stationary and the other to have the sum of the two speeds in the direction of its original velocity. “Two cars colliding head on at 60mph is the same as one car hitting a brick wall at 120mph.” It is rough and doesn’t work for all calculations, but the idea is the same.

        • Adalast@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          ·
          6 months ago

          Yeah, that’s why I used the heavy caveats. The wall produces an inelastic collision which will do WAY more damage as all of the energy is arrested rather than an elastic collision of the two vehicles in which a good portion of energy is spread between the two bodies as they separate.

      • bouh@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        6 months ago

        Well, considering the scales, the difference is not only imperceptible, I’m pretty sure it’s impossible to measure.

    • TankieTanuki [he/him]@hexbear.net
      link
      fedilink
      English
      arrow-up
      1
      ·
      6 months ago

      You’re missing the joke. Middle guy is right. Heavier objects experience greater attractive force but that’s matched by their greater inertia.