Orlen rozpoczął testy lokomotywy napędzanej wodorem, kupionej od Pesy. To pierwszy taki pojazd w Polsce. Do 20230 roku paliwowy gigant planuje przeznaczyć 7,4 mld zł na inwestycje w technologie oparte na odnawialnych źródłach energii.
First hydrogen locomotive started working in Poland.
Batteries can’t keep nearly as much power in a space as burnable fuel can, it’s just physically impossible because the oxygen you add to fuel gives it a far higher energy density where batteries need the oxygen built in.
Something like a locomotive also needs an absolute shit ton of power to pull the trains they pull, so you’re going to have a lot of difficulty and it’s going to be pretty expensive running high voltage lines across these railroads.
Hydrogen, because of railroad can easily control the infrastructure and fill up a train, run it right away, and refill it at its destination, could actually be a pretty viable option
There are zero sources of green hydrogen in the foreseeable future and railways can be electrified. Small runs that aren’t electrified can use batteries. There is a zero use case for a leaky fuel that we source from creating CO2 like hydrogen. The idea of using wastefully using electrolysis to something we can deliver power directly to is ludicrous.
Edit: I can think of ONE use case, and that’s maybe logging locomotives that will never be electrified.
As we move into green energy we’re going to have an excess of power at times that we don’t need it, and there’s going to be many use cases where stuff like electrolysis, even though it’s wasteful, is ultimately well worth it because power will be cheap to free during those times of day.
Not in my lifetime, that’s for sure. We currently supply nearly all agricultural hydrogen from oil cracking, for example. There may be a future where wastefully using hydrogen makes sense, but it’s not anytime soon. An actual solution is electrifying the train lines.
California literally already has the problem of excess energy on occasion, and it’s only going to get worse and worse as time passes until we create some sort of magical low cost energy storage solution.
Hydrogen is created from fracking now because we live in a fossil fuel world right now, but eventually as we’re forced to move away from it you’re going to have to have high energy density systems, and hydrogen is one of the few fairly reliable ways to do that.
That’s not what folks should seriously be comparing this to. You can run electric wires directly over the damn rail and feed a train off the grid. That’s where money should’ve be going everywhere 20 years ago. Running a train off of a diesel electric generator is dumb too frankly.
If hydrogen ever becomes a real thing, maybe for using green energy in remote areas where electric isn’t feasible or economical, maybe the cost to waste some peak solar/wind to generate hydrogen via electrolysis will somehow make sense cost-wise.
Go look at the weight of an average coal train and remember that most of these railways go through some of the most criminal regions of the country with lots of burnable forest land running around the tracks
Just because the US never electrified it’s train infrastructure after the obsoletion of the steam engine doesn’t mean other folks didn’t. Many trains straight up use their diesel engines as electric generators for electric motors. Electric cargo trains are cheaper to run than diesel, but the upfront cost is more expensive. Guess which option the non-state run train infrastructure of the United States chose. We’re still seeing massive resistance from the train companies for doing it because they don’t want to pay the cost.
For most trains in Europe. For example I can mention the Iron Ore Line in north Sweden which has 8600 trains. Which isn’t as heavy as some of the coal or ore trains around the world, but it’s at up to a 1% incline.
Fills up in a comparable time span as diesel locos, and the hydrogen storage would be much lighter compared to equivalent battery storage. No need for an onboard AC/DC generator for the traction motors too, as would be the case if it was diesel powered.
To me it seems like an ideal diesel loco replacement
I assume it will be hauling cargo, not passengers…
Weight is usually a feature for locomotives, which are sometimes ballasted for extra traction.
Occasionally you see extra-lightweight engines designed for light infrastructure-- often putting the same guts on more axles to lower the load, but it’s rare.
Modern locomotives also use AC traction motors, with sophisticated computer controls to generate an AC product suitable for the desired speed and torque. Even modern diesel-electric designs have alternators and AC internals. Yes, some old electric engines were huge rectifiers on wheels, but that’s no longer necessary.
Electrification is a very “capitalism won’t let us have nice things” problem; it’s a 25 year commitment to infrastructure and new engines before it pays full benefits (higher reliability, simpler equipment, higher horsepower per unit, using dynamic braking to return power to the grid)
I cannot understand the future use case of hydrogen locomotives. Who even funded this thing.
Big oil and gas fund it. Main source of hydrogen right now is from oil drilling.
Why not?
Batteries can’t keep nearly as much power in a space as burnable fuel can, it’s just physically impossible because the oxygen you add to fuel gives it a far higher energy density where batteries need the oxygen built in.
Something like a locomotive also needs an absolute shit ton of power to pull the trains they pull, so you’re going to have a lot of difficulty and it’s going to be pretty expensive running high voltage lines across these railroads.
Hydrogen, because of railroad can easily control the infrastructure and fill up a train, run it right away, and refill it at its destination, could actually be a pretty viable option
There are zero sources of green hydrogen in the foreseeable future and railways can be electrified. Small runs that aren’t electrified can use batteries. There is a zero use case for a leaky fuel that we source from creating CO2 like hydrogen. The idea of using wastefully using electrolysis to something we can deliver power directly to is ludicrous.
Edit: I can think of ONE use case, and that’s maybe logging locomotives that will never be electrified.
As we move into green energy we’re going to have an excess of power at times that we don’t need it, and there’s going to be many use cases where stuff like electrolysis, even though it’s wasteful, is ultimately well worth it because power will be cheap to free during those times of day.
Not in my lifetime, that’s for sure. We currently supply nearly all agricultural hydrogen from oil cracking, for example. There may be a future where wastefully using hydrogen makes sense, but it’s not anytime soon. An actual solution is electrifying the train lines.
California literally already has the problem of excess energy on occasion, and it’s only going to get worse and worse as time passes until we create some sort of magical low cost energy storage solution.
Hydrogen is created from fracking now because we live in a fossil fuel world right now, but eventually as we’re forced to move away from it you’re going to have to have high energy density systems, and hydrogen is one of the few fairly reliable ways to do that.
Electrolysis is wasteful, but so are internal combustion engines.
That’s not what folks should seriously be comparing this to. You can run electric wires directly over the damn rail and feed a train off the grid. That’s where money should’ve be going everywhere 20 years ago. Running a train off of a diesel electric generator is dumb too frankly.
If hydrogen ever becomes a real thing, maybe for using green energy in remote areas where electric isn’t feasible or economical, maybe the cost to waste some peak solar/wind to generate hydrogen via electrolysis will somehow make sense cost-wise.
It’s worked just fine for the past century
For what? Trolleys?
Go look at the weight of an average coal train and remember that most of these railways go through some of the most criminal regions of the country with lots of burnable forest land running around the tracks
Just because the US never electrified it’s train infrastructure after the obsoletion of the steam engine doesn’t mean other folks didn’t. Many trains straight up use their diesel engines as electric generators for electric motors. Electric cargo trains are cheaper to run than diesel, but the upfront cost is more expensive. Guess which option the non-state run train infrastructure of the United States chose. We’re still seeing massive resistance from the train companies for doing it because they don’t want to pay the cost.
For most trains in Europe. For example I can mention the Iron Ore Line in north Sweden which has 8600 trains. Which isn’t as heavy as some of the coal or ore trains around the world, but it’s at up to a 1% incline.
You got any idea of the energy density of Hydrogen? On a per m3 basis, batteries hold a lot more energy.
BTW, hydrogen doesn’t get burned.
Fills up in a comparable time span as diesel locos, and the hydrogen storage would be much lighter compared to equivalent battery storage. No need for an onboard AC/DC generator for the traction motors too, as would be the case if it was diesel powered.
To me it seems like an ideal diesel loco replacement
I assume it will be hauling cargo, not passengers…
It’s a very dumb solution to things that run on tracks and can be directly electrified. It’s mindbogglingly silly.
Weight is usually a feature for locomotives, which are sometimes ballasted for extra traction.
Occasionally you see extra-lightweight engines designed for light infrastructure-- often putting the same guts on more axles to lower the load, but it’s rare.
Modern locomotives also use AC traction motors, with sophisticated computer controls to generate an AC product suitable for the desired speed and torque. Even modern diesel-electric designs have alternators and AC internals. Yes, some old electric engines were huge rectifiers on wheels, but that’s no longer necessary.
Electrification is a very “capitalism won’t let us have nice things” problem; it’s a 25 year commitment to infrastructure and new engines before it pays full benefits (higher reliability, simpler equipment, higher horsepower per unit, using dynamic braking to return power to the grid)