Elon Musk says ‘we dug our own grave’ with the Cybertruck as he warns Tesla faces enormous production challenges::Tesla CEO Elon Musk said Wednesday that the Cybertruck’s unique design means the company faces immense challenges in scaling production.
It’s got a lot of new things to them
800v power train
Newer 4680 cells
~85% custom chip controllers (up from 60s on Y)
48v power electronics instead of 12v, which is fairly new to everyone and the supply chain isn’t as robust as the 12v one, but long term it’s good for industry. (Edit I’ve heard talk of how they connect everything is going to be very different too, but nothing I’ve seen confirmed)
Folding the stainless steel at scale
9000T press, biggest one made
The wheels that can turn on front and back
New assembly method (excluding stainless steel part)
I’m sure there’s more they didn’t tell us.
It went from being a weird vehicle (love or hate it) to a new technology platform.
4 wheel steering isn’t really new. (but your point is still taken)
I did say “to them”
800v isn’t new either, others use it
Edit: stainless steel aside, I have a suspicion that the 48v stuff will cause the most problems. That seems like a lot of suppliers where 1 problem halts the line.
In telecommunications at least, -48V is the standard. It will still be a massive issue but not impossible for suppliers to adapt (with delays). The biggest problem I see is the high cost associated with such low demand, unless more manufacturers start switching over.
deleted by creator
AFAIK Tesla is the first mass auto manufacturer going 100% 48v.
Others have a hybrid approach
deleted by creator
As another person said though, that also means it’s going to be higher cost to start.
It’s going to hurt by cost, and supply chain hiccups, but overall it’ll be better for everyone. Not sure how long a complete automotive transition will take though
deleted by creator
That will be a big issue. I think the entire industry will switch, but it’s not going to be immediate.
Once the CT is fully ramped, they’ll probably start to see some of those costs come down a little, but 250k a year pales in comparison to the whole industry using something.
Teslas Gen 3 platform will add to that scale and help too, but it’ll still be smaller than the industry.
Pretty much the entire list seems like features that have existed for industrial applications.
Which, sure, is challenging to transition to a new company and scale up to consumer levels of production and down to consumer levels of cost. But I agree everything about this truck seems iterative.
What would you ever consider new in any vehicle if you look at it like that?
Solid state batteries? Not new, it’s just changing the anode but a battery is a battery so it’s just an iteration.
… Not much.
I’m not really looking to the automotive industry for completely new innovation like that. If I’m going to spend tens of thousands of dollars for a car, I’m probably going to keep it for at least a decade and I value it being reliable and easy to repair. Mature technologies have a lot of advantages over new innovations there.
I’m not the one claiming that these features are new or innovate, and I’m not the one claiming that being on the cutting-edge of technology is a good thing. Musk is.
An example of a thing which has been tried so many times, but which ultimately only increases complexity, expense, and rate of failure for very little gain.
“Ah yes, let us take one of the most finicky vehicular systems outside of the engine itself and make it literally twice as complex!”
And in return you get… slightly reduced turning radius.
Ya didn’t say I loved it lol. I miss my 2004 civic with crank windows I had that car for 14 years with 0 work done minus oil and brakes.
Ah that wasn’t my interpretation, I was just sort of “yes, and-ing” your comment
For a company with already terrible QC that’s a lot more things to go wrong for buyers unfortunately
I don’t think a lot of those things are where Tesla really struggles with quality that’ll impact the customer. Just production delays and cost.
I’d be pretty surprised if the power train is a problem as that’s their specialty.
Same with the electronics, those don’t usually have problems except the electronic door handles that the Cybertruck won’t have.
I’ll be pretty surprised if the steel doesn’t cause QC problems, and I’m half expecting that massive windshield wiper to be a problem somehow.
Maybe the air suspension will be problematic, and probably the powered tonneau cover.
How is 48v better than 24v, for example? I don’t really know much about car electronics
Higher voltage allows for fewer amps. Higher amps creates more heat and requires thicker cables which cost more and add weight. So it’s substantially less copper since the wires don’t need to be as thick.
I can’t give exact numbers, but going from a 12/24v to 48v wiring harness will reduce the harness weight. I don’t know if that’s on a linear scale or not in terms of reduction.
A thinner wiring harness would also be easier to manage and place, e.g more bendable, less space required to place it.
It also gives you more leeway if you do want to push more amps to something without having to get into the really really big unwieldy wires that are very difficult to shape.
24v would work, but I imagine the thought is, if we need to create a whole new supply chain for automotive parts at a different voltage, why go to 24v when we can go to 48v and get even more benefits? The process is already happening, others have some hybrid 48v usage.
Someone else could comment on this, but without knowing more, I would speculate that higher voltages would even allow some sort of shrinking of the components themselves since internally they wouldn’t need to support as high of amps either, but that’s just my speculation.
Edit: Just some hypothetical numbers. If a wiring harness is 150lbs and lets say 48v gets it to 50lbs, that’s a $375 cost savings in copper alone. That’s also a ton less copper used/mined across the whole auto industry once transitioned. At 67 million cars a year, that would be 6,700,000,000 lbs of copper saved per year.
ok i work in a kind of tangential industry and can kind of answer this probably
in general the higher the voltage the smaller the current, which you’re generally happy about because your 1) electrical losses and 2) cable/wire diameter are both proportional to current
the tradeoffs being 1) it gets harder and more important to isolate the circuit (e.g. your wire insulation that prevents the 12V bus from shorting out to the vehicle chassis now needs to be thicker) and 2) all the stuff people make for cars (i dunno, windshield wiper motors, radiator fans, whatever) is currently for 12V
in general this move probably makes sense, provided they’re able to figure out their supply chains, and if tesla can position themselves as being like the first company to figure out a bunch of these 48V components at scale that’s probably going to be really good for them. they did a kind of similar thing with the charging infrastructure if i understand currently, like now the tesla charging cable is the de facto north american standard
I’m no expert, but even with ordinary 12V wiring, the insulation is generally rated for up to 600V, just because it’s not really practical to make it any thinner…
The charging cable isnt de-facto the standard. It is the standard now. All new vehicles from the big 3 and many foreign manufacturers will utilize NACS.
Pretty sure we’re still waiting on Stellantis?
Them and VW.
I was reading VW might be more complicated due to the emissions scandal and the requirements of rules for EA, but not a blocker, just more to work out.
For sure. Might have jumped the gun on stellantis, but they will fall in line with Ford and GM.
Regardless, NACS is here to stay and will be the standard moving forward. Tesla gets a fuck ton wrong, but their charging system and charging logistics is light years ahead of the competition.
deleted by creator
AFAIK Tesla is the first mass auto manufacturer to go fully 48v? Others are hybrid.